Simultaneous detection of five different 2-hydroxyethyl-DNA adducts formed by ethylene oxide exposure, using a high-performance liquid chromatography/electrospray ionisation tandem mass spectrometry assay.

نویسندگان

  • Elaine M Tompkins
  • Donald J L Jones
  • John H Lamb
  • Debbie A Marsden
  • Peter B Farmer
  • Karen Brown
چکیده

A method has been developed for the simultaneous detection and quantitation of five different 2-hydroxyethyl-DNA (HE-DNA) adducts that could be formed as a result of exposure to ethylene oxide (EO). In addition to the major N7-HE-guanine (N7-HEG) adducts this assay can also measure the less prevalent but potentially more biologically significant N1-HE-2'-deoxyadenosine (N1-HEdA), O(6)-HE-2'-deoxyguanosine (O(6)-HEdG), N(6)-HE-2'-deoxyadenosine (N(6)-HEdA) and N3-HE-2'-deoxyuridine adducts (N3-HEdU). The method involves the isolation of HE adducts from the unmodified nucleosides by either neutral thermal hydrolysis or enzymatic digestion, followed by high-performance liquid chromatographic (HPLC) purification, before detection and quantification by liquid chromatography tandem mass spectrometry (LC/MS/MS) using selective reaction monitoring (SRM). The limits of detection were in the range 0.5-25 fmol for each individual adduct, making this one of the most sensitive assays available for the detection of N7-HEG. To illustrate the possible applications of the assay, it has been employed in the measurement of endogenous/background and EO-induced HE adducts in a variety of DNA samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-performance liquid chromatography/electrospray mass spectrometry for the analysis of modified bases in DNA: 7-(2-hydroxyethyl)guanine, the major ethylene oxide-DNA adduct.

A method was developed for the analysis of 7-(2-hydroxyethyl)guanine (7HEG), the major DNA adduct formed after exposure to ethylene oxide (EO). The method is based on DNA neutral thermal hydrolysis, adduct micro-concentration, and final characterization and quantification by HPLC coupled to single-ion monitoring electrospray mass spectrometry (HPLC/SIR-ESMS). The method was found to be selectiv...

متن کامل

Relative Determination Approach to the Metabolites of Protoberberine Alkaloids in Rat Urine by Liquid Chromatography Tandem Mass Spectrometry for the Comparative Studies on Rhizome coptidis and Zuojinwan Preparation

The lack of authentic standards has limited the quantitative analysis of herbal drugs in biological samples. The present work demonstrated a practicable strategy for the assay of herbs and their metabolites independent of authentic standards. A liquid chromatography–electrospray ionization–mass spectrometry (LC–ESI–MS) method for the qualitative and quantitative determination of the metabolites...

متن کامل

Relative Determination Approach to the Metabolites of Protoberberine Alkaloids in Rat Urine by Liquid Chromatography Tandem Mass Spectrometry for the Comparative Studies on Rhizome coptidis and Zuojinwan Preparation

The lack of authentic standards has limited the quantitative analysis of herbal drugs in biological samples. The present work demonstrated a practicable strategy for the assay of herbs and their metabolites independent of authentic standards. A liquid chromatography–electrospray ionization–mass spectrometry (LC–ESI–MS) method for the qualitative and quantitative determination of the metabolites...

متن کامل

Dose-response relationships for N7-(2-hydroxyethyl)guanine induced by low-dose [14C]ethylene oxide: evidence for a novel mechanism of endogenous adduct formation.

Ethylene oxide (EO) is widely used in the chemical industry and is also formed in humans through the metabolic oxidation of ethylene, generated during physiologic processes. EO is classified as a human carcinogen and is a direct acting alkylating agent, primarily forming N7-(2-hydroxyethyl)guanine (N7-HEG). To conduct accurate human risk assessments, it is vital to ascertain the relative contri...

متن کامل

Dose-Response Relationships for N7-(2-Hydroxyethyl)Guanine Induced by Low-Dose [C]Ethylene Oxide: Evidence for a Novel Mechanism of Endogenous Adduct Formation

Ethylene oxide (EO) is widely used in the chemical industry and is also formed in humans through the metabolic oxidation of ethylene, generated during physiologic processes. EO is classified as a human carcinogen and is a direct acting alkylating agent, primarily forming N7-(2-hydroxyethyl)guanine (N7-HEG). To conduct accurate human risk assessments, it is vital to ascertain the relative contri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Rapid communications in mass spectrometry : RCM

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2008